FARMA 3 **C**

AD.

REACTIVE ORGANOSILANE COUPLING AGENTS

WEAPON SYSTEMS LABORATORY

TILE COPY

AD A 0 65

The views, opinious, and/or findings conteined in this report are those of the arthor(a) and should not be construed as an official Dorartment of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return to the originator.

The citation in this report of the names of commercial firms or commercially available perducts or services does not constitute official endorsement or approval of such commercial firms, products, or services by the United States Government. ASSIFIED
CLASSIFICATION OF THIS PAGE (When Date Entered)

T. REPORT NUMBER		PAGE	BEFORE COMPLETING FORM	1
ADVOD OD BOARA	7/	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER]
ARLCD-TR-78942		<u> </u>		Į
TANDOLLED ADIDO	THE POUR PROMA	ATENOR BUTTER 7	S. TYPEON LEAGAN & PERIOD COVERSE	Т
DEACTIVE OPGAN	sive Bond Permai Nosilane Couplin	NO ACENTS	1 (17echnical	1
EVOLUA EVOU	COLLAND COULTY	AG MODINIO .	6. PERFORMING ORG: HEPONT HUMBER	╄
				1
7. AUTHOR(a)	······································		8. CONTRACT OR GRANT NUMBER(+)	ł
G. Robert/Sacco				l
William C. Tanner	<u>r </u>			l
9. PERFORMING ORGANIZA			10. PROGRAM ELEMENT, PPOJECT, TASK AREA & WORK UNIT HUMBERS	1
ARRADCOM, LCW	Division (DRDAR-	T CA)	\ /	
Dover, NJ 07801	DIAIBIOII (DUDWY.	LOAJ	AMCMS Code 812)05H840011	
11. CONTROLLING OFFICE	NAME AND ADDRESS		N. proport Date	ĺ
ARRADCOM		(11	NOVEMBER 78	!
DRDAR-TSS				İ
Dover, NJ 07801	NAME & ADDRESS/II dillere	nt from Controlling Office)	18. SECURITY CLASS. (at this report)	ł
ARRADCOM, LCW		21	UNCLASSIFIED	•
ATTN: DRDAR-L	$CA \qquad (/2)$	-16 b. 1		l
Dover, NJ 07801			154. DECLASSIFICATION/DOWNGRADING SCHEDULE	l
17. DISTRIBUTION STATEM	SNY (of the obetract entered	l in Block 20, if difere nt fro	as Report)	
17. DISTRIBUTION STATEM		i in Block 20, If diferent fra	as Report)	
	ES n reverse side if necessary a	nd identify by block number,		
19. KEY WORDS (Cartinue or Silane coupling ag Surface preparations)	n reverse elde if necessary a gents on			
19. KEY WORDS (Continue or Silane coupling ag Surface preparation Adhesive joint per	reverse side if necessary a gents on rmanence	nd identify by block number; Aluminum adhesi	ve joints	
19. KEY WORDS (Cartinue or Silane coupling ag Surface preparations)	reverse side if necessary a gents on rmanence	nd identity by block number; Aluminum adhesi Primers	ve joints	
19. KEY WORDS (Continue or Silane coupling ag Surface preparation Adhesive joint per	reverse elde il necessary a gents on rmanence ilanes	nd identify by block number; Aluminum adhesi Primers Durability of join	ve joints	

DD 1 JAN 79 1473

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Floor Data Entered)

410 163

SECURITY CLASSIFICATION OF THIS PAGE(When Date Shiered)

20, (Cont'd)

initially and after adverse exposure than the control samples when bonded with room temperature-curing epoxy resin. The glycidoxypropyltrimethoxysilane (Z6040) showed better initial bond strength than the control samples and good retention of bond integrity after adverse exposure when used with aluminum alloys and an intermediate cure temperature [121°C (250°F)]epoxy adhesive. The remaining organosilanes did not show appreciable improvement over the control samples.

ATMSSIGN for MISS DOOR TO THE STATE OF THE S

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

TABLE OF CONTENTS

	Page	NO
Introduction		1
Discussion of Results		2
Experimental Procedure		3
Preparation of Adherends Silane Primer Solution Methods of Applying Silanes Resins Bonding Procedure Adverse Conditions Conversion to SI Units		3 4 4 4 4 5 5
Conclusions		6
Recommendation		6
References		6
Appendix		
Effects of Functional Coupling Agents on Bond Strengths Distribution List	_	1
Tables		
1 Organosilane coupling agents		7
2 Summary of organosilane coupling agents results		8

INTRODUCTION

Silane coupling agents (ref 1 and 2), because of their ability to bond organic polymers to inorganic materials, can be used to improve the adhesive bonding of metals. The hydrolyzable groups on silicon are generally believed to be the means by which the silane coupling agents interact with the metallic oxides. The silanes form chemical bonds at the interface that maintain high strength under high humidity and other adverse environmental conditions. The organic moiety of the silane reacts with organic functional groups of the adhesive. Thus, the organosilane functions as a true coupling agent, bonding the inorganic metal oxide to the organic adhesive. A true coupling agent bridges the interface.

The hypothesized mechanism is:

Silane-to-Inorganic Surface Interface

1. Hydrolysis

$$R-S_{i}(OR)_{3} + 3H_{2}O \xrightarrow{H +} R - S_{i}(OH_{3})_{3} + 3ROH$$

2. Equilibrium Bond Formation

Silane-to-Organic Polymer Interface

The formation of covalent bonds between the silane's organofunctional moiety and reactive species of the polymer matrix is:

Among the more reactive organic groups available on silane coupling agents are vinyl, alkyl amino, alkyl mercapto, and epoxy radicals (table 1).

DISCUSSION OF RESULTS

In this investigation, rive different reactive organosilanes (table 1) were evaluated as adhesion promoters to improve bond strength and protect the bonds against the deleterious effects of water. Initial experiments were run to determine the conditions to be used to evaluate these coupling agents. A summary of the results is given in table 2. Individual results are given in the Appendix.

- 1. Using a methanol wash followed by compressed air-drying of the FPL-etched specimens resulted in an improvement of approximately 10% in lap-shear tensile strength.
- 2. Untreated acetone-degreased specimens coated with organosilane solutions had lap-shear tensile strengths much lower than the FPL-etched control specimens.
- 3. Varying the concentrations (0.1, 0.5, 1.0%) of the organosilane solutions did not appreciably alter the bond strengths (table 2).
- 4. The method of applying the silane solution to the FPL-etched specimens (brush-on or dip) did not appreciably affect the strength of the bonds (table 2).

The amino and vinyl functional organosilanes did not show any improvement in bond strength over the control samples when 2024T3 aluminum specimens were bonded with Epon 828/Versamid 140. In several experiments they had lower bond strengths. The vinyl functional silane did not react with the epoxy group. There is some indication that aluminum specimens containing high concentrations of copper render amino functional silanes ineffective

(table 2).

The mercapto and epoxy organosilanes had bond strengths 43% and 29% greater, respectively, than the control samples (Appendix). After a 34-day (816-hr), 60°C (140°F) water soak, the mercapto silane bond strength was 41% and the epoxy silane 43% better than the control water soak.

Experiments in which the organosilane was added directly to the adhesive resin indicated essentially no improvement over coating the 2024T3 aluminum adherends with silane solution initially or after a 34-day (816-hr) hot water soak (table 2). Experiments in which the mercapto silane specimens were bonded by coating the adherend and adding the silane to the resin resulted in stronger bonds than the uncoated control, however, not as strong as the bond formed by coating the adherend only. In a similar experiment using epoxy-functional silane, the bond strength was greater than the control or coating the adherend solely.

EXPERIMENTAL PROCEDURE

Preparation of Adherends

2024T3 and 6061T4 aluminum alloys were etched using the FPL etch before bonding. The panels were degreased with acetone and treated by immersing the bonding surface in a solution containing 1 part by weight (pbw) sodium dichromate, 10 pbw concentrated sulfuric acid, and 30 pbw deionized water. The solution temperature was 60°C (140°F) and the immersion time 7 to 10 minutes. The treated panels were rinsed for 1 to 2 minutes in running tap water at 60°C (140°F), rinsed with deionized water at room temperature, and dried in a circulating-air oven at 60°C (140°F). An alternate procedure for drying was also used in which the deionized water-rinsed panels were washed with absolute methanol and dried at room temperature using filtered compressed air.

Silane Primer Solution

The organosilenes were diluted to 10% pbw solids using deionized water and acidified to a pH of 3.5-5.0 with glacial acetic acid. The resulting solutions were allowed to stand 24 hours to complete hydrolysis. Silane solutions of 0.1%, 0.5%, 1.0% pbw solids were prepared by diluting aliquots with absolute methanol.

Methods of Applying Silanes

- 1. The diluted organosilane solutions were brushed on the metal surfaces to be bonded and dried in air.
- 2. The metal surfaces to be bonded were immersed in a diluted organosiiane solution.
- 3. Neat solutions of the organosilanes were mixed in with the adhesive resin in concentrations of 0.1%, 0.5%, 1.0%.

Resins

Epon 828/Versamid 140 is a two-component epoxy adhesive system. Epon 828 is a bisphenol A epoxy resin manufactured by Shell Chemical Co., Versamid 140 is an aliphatic polyamide resin manufactured by General Mills, Inc. The latter is a combination modifier (flexibilizer) and curing agent for the adhesive system. The adhesive was formulated using 70 pbw Epon 828 and 30 pbw Versamid; it cures at 23°C (73°F) and requires approximately 0.07 MPa (10 psi) contact pressure for joint formation.

EC 2214 is a modified one-component epoxy paste manufactured by 3M Co. It is suitable at room temperature for trowel applications. It cures at 121°C (250°F) in 40 minutes. It requires only contact pressure (approximately 0.07 MPa (10 psi)) for joint formation.

Bonding Procedure

The test specimens used in this evaluation were single-lap,

4

shear-type specimens having $12.7 \times 25.4 \text{ mm}$ ($1/2 \times 1 \text{ inch}$) bond areas. Each was febricated in the form of four panels and the overlap was controlled by using jigs. The surfaces to be bonded were coated with organosilane solution, air dried, the adhesive was applied and the panels assembled.

Adverse Conditions

Hot water soak/residual-strength

The bonded specimens were immersed in a thermostatically controlled deionized water bath at 60°C (140°F) for 34 days (816-hr.). The specimens were then removed in a container of water at 50°C (140°F) and transferred to the test chamber of the Baldwin Tensile Test Machine which was controlled at 60°C (140°F). Each specimen was removed from the container, placed into the grips, and tested to failure at a constant load of 16.54 MPa/min.

95% relative humidity/residual strength

Specimens were conditioned in a controlled humidity cabinet of 60°C (140°F) and 95% RH for ninety days before testing.

Conversion to SI Units

Stress units of pounds per square inch (psi) were converted to megapascals (MPa) as follows:

$\frac{\text{psi x 6.8948}}{1000} - \text{MPa}$

This was in accordance with ASTM E380-74.

CONCLUSIONS

Reactive organosilane coupling agents have been demonstrated to be capable of improving the initial bond strength of epoxy-based adhesives and improving the resistance of the adhesive bonds on 2024T3 and 6061T6 aluminum alloys to moisture or water-ind. ed degradation. The adhesive and the organosilane are most effective when the organic moieties are mutually chemically reactive and the reactivity occurs during the adhesive joint formation. The vinyl functional moiety does not react with the epoxy adhesives and is ineffective in combating joint degradation. The Z6020 (2-amino-ethyl) is very reactive (fumes in air); it reacts too quickly to be effective in epoxy adhesives.

RECOMMENDATION

The specificity of reactants demonstrated, the improvements gained, and the limited scope of this investigation suggest that a long range evaluation should be conducted to determine the effects of combined elevated temperature, humidity, and stress on joints with organosilane coupling agents.

REFERENCES

- 1. E. P. Plueddemann, 'Mechanism of Adhesion of Coatings Through Reactive Silanes', Journal of Paint Technology, November 1970.
- 2. E. P. Plueddemann, Composite Materials: Vol. 6, Interfaces in Polymer Matrix Composites, Academic Press, 1974.

Table 1

Organosilane coupling agents

Organosilanes

1. Dow Corning Z6020 - N(-2 aminoethyl)-3-aminopropyltrimethoxysilane.

H2NCH2CH2NCH2CH2CH2Si(OCH3)3

2. Dow Corning Z6040 - Glycidoxypropyltrimethoxysilane.

3. Dow Corning Z6062 - Mercaptopropyltrimethoxysilane.

HSCH2CH2CH2Si(OCH3)3

4. Dow Corning Z6032 - Vinylbenzylamine functional silane.

 $CH_2 = CH_2$ $- CH_2 N CH_2CH_2NHCH_2CH_2CH_2Si(OCH_3)_3$

5. Union Carbide Corp. A-1100 - N-aminopropyltriethoxysilane.

H2NCH2CH2CH2Si(OCH2CH3)3

TABLE 2

SUMMARY OF ORGANOSILANE COUPLING AGENT RÉSULTS

	SILANE		ADVERSE	SHEAR STRENGTH	RENCTH	SHEAR STRENGTH	STRENGTH	Z DEGNADATION
ORTHON :	PRINCER	ADHESTVE	EXPOSURE	M Pa	pet	H Pa	ps1	
2024T3	none	EC2214	95% rh,	38.0	5510	28.7	4169	-24.3
(.063")			60°C(140°F)					
	26040	EC2214	90 days	41.8	709	33.0	4783	-21.3
	26040	EC2214 Z6040		42.1	6107	35.7	5176	-15.0
606174	none	EC2214	95% th.	21.0	3054	13.2	1914	-37.3
(.063")			60°C(140°F)					
	26040	BC2214	90 days	25.9	3757	25.5	3696	- 1.6
	07092	EC2214 Z6040		26.7	3875	28.9	4194	+ 8.
2024T3	none	Epon 828 V-140	Hot water					
(.125")			soak, 60°C	20.9	3063	22.6	3310	+ 8.0
	07042	Epon 828 V-140	(140°F)34 days	ys 22.0	3205	27.6	7000	+24.9
ф£1909	none	Epon 828 V-140	÷	13.2	1925	0.6	1310	-41.9
	04092	Epon 828 V-140		26.1	3810	15.3	2243	-31.9
302	none	Epon 829 V-140	ı	10.7	1565	9.6	1395	-10.8
Stainless	0 1 09z	Epon 828 V-140		11.5	1680	10.3	1510	-10.1
	(0.3%)						_	
-	-	-	-		:]			

Я

TABLE 2 (Con't)

SUMMARY OF ORGANOSILANE COUPLING AGENT RESULTS

2024T3	PRINCER	ADHESIVE	EXPOSURE	at 21°C (70°F)	(70°F)	ADVERSE CONDITION	CONDITION	DEGRADATION
 				ЖРа	psi	MPa	D81	
	none	Epon 828 V=140	Hot water	26.9	3933	20.8	3048	-22.5
\vdash			soak, 60°C		,			
	Z503Z (0.3%)		(140°F)34 days	ys 25.9	3780	20.7	3020	-20.1
606174	none	Epon 828 V-140	(140°F)34 days	ys 7.5	1090	8.1	1180	+8.3
("690")								
)	26032 (0.3%)			10.5	1538	9.2	1338	-13.0
├ ──	none	V-140	(140°F)34 da	days 20.1	3370	19.2	2800	-3.8
Steel 2	26032			21.1	3065	20.3	2948	-0.2
2024T3 n	none	Epon 828	(140°F)34 days	ys 18.2	2648	12.6	1835	-30.7
(,125")		Oblea						
Z	Z6020 (0.5Z)	Epon 828 V-140	(140°F)34 days 20.2	vs 20.2	2935	6.9	210	-75.9
8	(Brushed or							
2	26020	Epon 828 V-140	(140°F)34 deve 20.8	vs 20.8	3025	4.2	603	-80.1
8	(Dipped)							
	none	26020		19.1	2778	12.7	1845	-33.6
Z	26020	28020		14.5	2180		No Bond	-100.0

TABLE 2 (Com't)
SUMMARY OF ORGANOSILANE COUPLING AGENT RESULTS

A DHER FAID	SILANE	ADBESIVE	ADVERSE EXPOSURE	SHEAR STRENGTH at 21°C (70°F)	RENGTH (70°F)	SHEAR STRENGTH ADVERSE CONDITION	STRENGTH CONDITION	X DEGRADATION
				M Pa	psi	N Pa	paí	
2024T3	none	Epon 828 V-140	Hot water	20.5	2978	11.1	1625	-45.4
(,125")			Soak, 60°C					
	Z909Z (0°5%)		(140°F)34 de	days 29.3	4255	15.6	2270	-46.7
	none	÷26062	(140°F)34 de	deys 22.0	3200	14.4	2095	-34.5
	26062	+2 6062	(140°F)34 de	days 23.6	3420	18.0	2610	-23,7
2024T3	none	V-140	(140°F)34 de	deys 19.2	2793	15.5	2245	-19,6
(.125")								
	2 604 0 (0.5%)	Epon 828 V-140	(140°F)34 d	deys 24.8	3598	22.0	3190	-11.3
	none	2 6040		27.4	3978	13.9	2015	-49.3
	07097	26040		28.0	0807	25.5	3585	-12.1
2024T3	none	V-140		26.0	3778	11.0	1605	-57.5
(,125")								
	A-1100	<u>Epon 828</u> V-140		18.9	2745	8.4	1221	-55.5
	(1.0%)							
2024T3	none	V-140		25.7	3728	11.4	1673	-55.1
(.125")								
	2 £062)	V-140		26.1	3793	12.5	1822	-52.0
•		•	-					

APPENDIX

EFFECTS OF FUNCTIONAL COUPLING AGENTS ON BOND STRENGTHS

Effect of Epoxy Functional Coupling Agents on Bond Strengths to 2024T3 Aluminum with EC 2214

ADHEREND	S ILANE PR IMER	ADHES IVE	ADVERSE EXPOSURE	SHEAR S AT 210	SHEAR STRENGTH AT 21° (73°F)	SHEAR STRENGTH ADVERSE CONDITION	TRENGTH OND IT ION	% DEGRADATION	
		,	þsí	psi	м Ра	psi	psi	M Pa	
2024T3	none	EC 2214	2557			4324			
(,063")		,	2857			4196			
			2625	,		4304			
			5592			1607			
		: .	77/5			3928			
			0205	2510	38.0		6915	28.7	
12	26040	EC 2214	5783			4793			
			6134			7887			
			5519			1827			
			1779			4859			
			6421			4600			
		·	5709	5209	8.14		4783	33.0	
	26040	EC 2214 26040	5876			5354			
		÷	8328			5540			
	:	:	8119			5053			
	:	:	5885	·		5025			
			6270			4905			
			6136	6107	42.1		5176	35.7	

Effects of Epoxy Functional Coupling Agent on Bond Strengths to 8061T4 Aluminum with EC 2214

9	M Pa				·		13,2						25.5						28.9
AVG (psi						7161						9698						7617
SHEAR STRENGTH 95 th 60 ^c c (140 ^o f)	psi	1959	1869	1796	1963	1984	,	3709	3592	3687	3767	3724		4302	9607	4240	4188	4172	
	M Pa						21.0				·		25.9						26.7
21°C (70°F)	psi						3054						3757			:			3875
21	psí	2880	3255	3159	2892	3215	2923	3697	3964	3745	3909	3702	3507	3788	3909	4052	3729	3866	3908
ADHES IVE	-	ZC 2214						EC 2214					7100 04	26040					
STLANE PR DÆR		none			, ,			26040						Z 6040					
ADHEREND		8061T4	("690")					13									· .		

Effects of Epoxy Functional Coupling Agent on Bond Strengths to 2024T3 Aluminum with Epon 828/Versamid 140

AVG																			<u>_</u>
STRENCTH Hot Water Soak 60 C (140°F) 34 days	M Pa				22.6					27.6									
SHEAR STRENGTH Hot Water 60 C (140	psi	1117		,	3310					4005									
	psi	3440	3400	3300	3100		3940	3900	4080	4100									
AVG	M Pa				20.9					22.0				٠					
21°C (70°F)	psi			•	3063					3205									
	psi	3340	2900	3060	2950	:	3100	3240	3200	3280					: .				
ADHES IVE		8528-828 V-140					Epon 828 V-140			·					:	:			
S ILANE PR IMER		none				0.3%	26040	Brushed	tuo			:	:		:	:			
ADHEREND		2024T3	(,125")																
ļ		 		—		ļ	 		14		 			 ļ	 	 	-	 -	

المادي المراجعة في الأرادة المسهورية. ولا أن المستوليق في المسهورة المسهورية

Effects of Epoxy Functional Coupling Agents on Bond Strengths to 606174 Aluminum with Epon 628/Versamid 140

-															
AVG	M Pa			·	0.6				·	15.3					
Hof Water Soak 60 C (140°F) 34 days	psi				1310					2243					
SHEAR STRENGTH Hot Wate	psí	1200	1400	1340	1300		2520	2000	2400	2050					
SHEAN	M Pa		.,		13.2					26.1					
21°C (70°F)	psi				1925					3810					
216	psi	1760	2100	1740	2100		3540	4000	3760	3920			:		
ADRES IVE		Epor 828 V-140					Epcn 828 V-140							 	
SILANE PR DÆR		none	:			0.3%	26040	Brushed on				:			
ADHEREND		82-1T4												 · .	

The second second

Effects of Epoxy Functional Coupling Agent on Bond Strengths to 302 Stainless Steel Using Epon 828/Versamid 140

AVG	M Pa				10,3					9*6							
	psí				1510					1395							
SHEAR STRENGTH Hot Water Soak 600c (140°F) 34 days	Ţ8ď	1560	1500	1460	1520		1380	1420	1360	1420							
SHEA	M Pa				11.5	. !				10.7							
21°C (70°F) AVG	pst				1680					1565		:					
	psí	1690	1710	1730	1590	:	1460	1520	1600	1680		·					
ADHES IVE		Epon 828 V-140	. :				<u>Epon 828</u> V-140		,			···		:			
S ILANE PR DÆR		none				0.3%	07/09 Z	Brushed on					:	:	:		
ADHEREND		302	Stainless	Steel			-		16								

The second of th

Effects of Viny: Functional Coupling Agent on Bond Strengths to 2024T3 Aluminum with Epon 828/Versemid 140

																,	
's AVG	M Pa				20.7					20.8							
RENGTH Hog Water Soak 60 C (140 F) 34 days	psi				3020	·				3048							
SHEAR STRENGTH HOG WA 60 C (psi	2900	3800	2580	3200		0967	000 € ւ	3050	3183							
	M Pa				25.9			·		26.9							
21°C (70°F) AVG	pei			;	3780					3933							
	rsi	07/8	37÷0	3826	0087		3970	3870	3910	0866					÷		
ADHES IVE		Epon 828 7-140					7-140							:	:		
S D'ANE PR DÆR		none				25.0	26032	Brushed on				·					
AUHEREND		2024T3	(*063")						17					 		,	

Effects of Vinyl Functional Coupling Agents on Bond Strengths to 636174 Aluminum with Epon 628/Versamid 146

Days AVG	M Pa				8.1					9.2								
STRENCTH Hot WateroSoak 60°C (140 P) 34 Days	psi	·			1180					1338								
SHEAR STRENGTH Hot Water 60°C (140	psi	1130	1190	1250	1240		1300	1400	1300	1350								
- 1	M Pa				7.5					10,5								
21°C (70°F) AVG	psi		ì		1090					1538								
	psi	1210	1000	1100	1050		1500	1560	1580	1510								
ADRES IVE		051-A 051-A					V-140							:				
S ITANE PR DER		none				75.0	26032	Bruehed on					:					
ADHEREM		8061T4	(,063")															
r		,								18		,	1	,		1	11	,

Rifects on Vinyl Functional Coupling Agents on Bond Strengths to 302 Stainless Steel using Epon \$28 Versamid 140

ADHEREDAD	S ILANE	ADHESTYE	.2	21°C (70°F) AVG		SHEAR STRENGTH Hot 16	INCTH Hot Water Soak 60oc (140 ⁰ P) 34 hava	MAYA AVG	
			pst	psf	M Pa	psí	pst	1 %a	
	none	Epon 828 V-140	3360			2900			
Stainless			3520			2760			
Steel			3200			2800			
			3400	3370		2750	2803	19.2	
	0.3%								
	Z 6032	Epon 828 V-140	2960			2930			
	Brushed		3160			0708			
	wo	,	3560			2970			
			2580	3065	21.1	2850	2948	20•3	
			-						
·	: .								

Effects of Diamino Functional Coupling Agent on Bond Strengths to 2024T3 Aluminum using Epon 828/Versamid 140

: : :																				
ENCTH Hot Water Soak 60oc (140°P) 34 days AVG	H Pa				12.6					4.9				4.2				12.7	·	
SHEAR STRENGTH Hot Water 600C (140	psí				1835					710				603				1845		
SHEAR S	pst	1800	2000	1640	1900		730	099	730	720	909	200	.650	999	1730	1860	1940	1850		
'F)	M Pa	·	`	·	18.2					20.2				20.8				19.1		
21°C (70°F) AVG	pst				2648					2935				3025				2778		
	psi	2700	2500	2630	2760		2930	2900	2950	2960	2960	2900	3150	3090	2790	2810	2760	2750		
ADHES IVE		Epon 828 V=140					Epon 828 V-140								1% Z 6020	:	:			<u> </u>
S ITANE PR DIER		none				.57.	26020	Brushed	100		26020	Dipped into	Silane	Solution	none					
ADHEREND		2024T3																		_
;									20		- سا					 	 -		 	

The second second

...

}--

AVG														
ENGTH Hot Water Soak 60°C (140°F) 34 days	M Pa													
SHEAR STRENGTH HOL WA	psi	dling	dling											
	psi	Broke in handling	t Broke in handling	200	200									
F) VG	M Pa				14.4									
21°C (70°F) AVG	pst				2108									-
	psi	2090	2130	2130	2080	,					·			
ADHES IVE		17, 26020												
S IIANE PR DAER		26020										`		
ADGEREND													·	
				-			21							

All the second of the second o

Effects if Mercapto Functional Coupling Agent on Bond Strengths to 2024T3 Aluminum using Epon 828/Versamid 140

days AVG,	M Pa				11.1					15.6				14.4				18.0	
NGTH Hot Water Soak 60°C (140°F) 34 days AVG	pst				1625					2270				2095				2610	
SHEAR STRENGTH Hot 1	þst	1630	1630	1560	1680		2220	2300	2320	2240	2060	1980	2160	2180	7620	2580	2580	2660	
AVG	M Pa				20.5					29.3				22.0				23.6	
21°C (70°F)	psi				2978					4255				3200				3420	
	psi	2810	2900	3160	3100		4250	4270	4140	4360	3100	3100	3300	3300	3400	3450	3410	3420	
ADHES IVE		Eppn 828 V-140					Epon 828 V-140				12 26062				17, 26062		1		
S ILAKE PR INCR		acon				75.	26062	Brushed	on		none			·	26062				
ADHEREND		2024T3																<i>:</i> .	

Effects of Epoxy Functional Coupling Agent on Bond Strengths to 2024T3 using Epon 828/Versamid 140

g																				
sak 34 days AVG	M Pa				15.5					22.0				13.9				25.5		
SHEAR STRENCTH Hot Water Soak 60°C (140°F) 34 days	psi				2245					3190				2015				3885		
SHEAR	psi	2120	2260	2280	2320		3120	3100	3140	3400	2000	2100	1960	2000	3540	3540	3580	3560		
ဖ	M Pa		,		19.2					24.8				27.4				28.0		
21°C (70°F) AVG	psi			:	2793					3598				3978				0807		
	psí	2860	2730	2780	2800		3520	3320	0007	3550	3860	4130	3990	3930	0907	4070	0504	0717		
ADHES IVE		Epon 828 V-140	• •				Epon 828 V-140				1% Z60%0				12 26040		:			
S ILANE PR DÆR		none				25.	Z 6040	Brushed on			none				26040					
ADHEREND		2024T3	(,125")																	
F	-					-			23						*			-		

Effects of Amino Functional Coupling Agents on Bond Strengths to 2024T3 Aluminum with Epon 828/Versamid 140

AVG																
STRENGTH Hot Water Soak 60°C (140°F) 34 days AVG	M Pa	·			11.0					8.4						
SHEAR STRENGTH Hot Water 60°C (140°	psi				1605					1221						
ZH:S	pst	1510	1620	1590	1600		1260	1215	1190	1220						
	M Pa				26.0					18.9						
21°C (70°F) AVG	psi			;	3778					2745						
	psi	3580	3780	3750	0007		2800	2700	2720	2760				÷	:	
ADHES IVE		Epon 828 V-140		÷			<u>Epon 828</u> V-140							:		
S ILANE PRIMER		none				17	A-1100	Brushed on	-							
ADHEREND		2024T3							24							

24

Effects of Mercapto Functional Coupling Agent on Bond Strengths to 2024T3 Aluminum using Epon 628/Versamid 140

					_													_
H Pa			11.4					12,5										
рвл			1673					1822										
ps1 1625	1700	1725	1640		1750	1900	1825	1810										
			25.7			·		26.1										
			3728					3793					·					
4000	3560	3550	3800		3760	3720	3800	3950										
Epon 828 V-140					<u> </u>													
none				21	Z909Z													
2024T3	(,125")																	
 		+			17.				(,125")	(,125")	(,125")	(,125")	(,125")	(,125")	(,125")	(,125")	(,125")	(,125")

The second se

CISTRIBUTION LIST

Commander

US Army Armament Research and

Development Command

ATTN: DRDAR-TSS (5)

DRDAR-LCA-OA (15)

DRDAR-LCN (5)

DRDAR-LCU (5)

DRDAR-QA (2)

DRDAR-TSF (2)

DRDAR-QAA

DRDAR-QAN

Dover, NJ 07801

Commander

US Army Materiel Development

and Readiness Command

ATTN: DRCPP-PI

DRC-QA

5001 Eisenhower Avenue

Alexandria, VA 22304

Commander

US Army Missile Research and

Development Command

ATTN: DRSMI-RLM, Mr. E. A. Verchot

Chief, Document Section

Redstone Arsenal, AL 35801

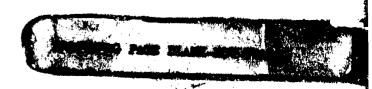
Commander

US Army Armament Materiel

Readiness Command

ATTN: DRSAR-MP-PC

DRSAR-RDP


DRSAR-RDM

DRSAR-RDT, Dr. Daryl Penrod

DRSAR-RDT

DRSAR-ASF, Mr. H. Wohlferth

Rock Island, IL 61299

Commander

US Army Electronics Command

ATTN: DRSEL-TL-ME, Mr. Dan Lichenstein DRSEL-TL-ME, Mr. A. J. Raffalovich

DRSEL-TL-ME, Mr. G. Platau DRSEL-PP-EM2, Ms. Sarah Rosen

Fort Monmouth, NJ 07703

Director

US Army Tank-Automotive Research And Development Command ATTN: DRSTRA-KMD Warren, MI 48090

Commander

US Army Materials and Mechanics Research Center

ATTN: DRXMR-FR, Dr. G. Thomas

DRXMR-PL

Technical Information Section

Watertown, MA 02172

Director

US Army Production Equipment Agency Rock Island Arsenal ATTN: DRXPE-MT, Mr. H. Holmes (2) Rock Island Arsenal, IL 61299

Commander

USA Troop Support and Aviation Materiel Readiness Command

ATTN: DRSTS-MEU (2), Mr. E. Dawson

DRSTS-ME (2), Mr. C. Sims DRSTS-MEN (2), Mr. L. D. Brown

DRSTS-MEL (2), Mr. Bell DRSTS-MET (2), Mr. Ceasar

P.O. Box 209, Main Office St. Louis, MO 63166

Commander

Corpus Christi Army Depot ATTN: DRSTS-MES (STOP) (2)

DRSTS-MESA, Mr. T. Tullos (2)

DRSTS-MEST, Mr. Bulloch

Corpus Christi, TX 78419

Commander/Director
Chemical Systems Laboratory
USA ARRADCOM, Bldg E5101
Aberdeen Proving Ground, MD 21010

Chief
Benet Weapons Laboratory
LCWSL, USA ARRADCOM
ATTN: DRDAR-LCB
DRDAR-LCB-TL
Watervliet, NY 12189

Director
US Army Engineer Waterways
Experiment Station, P.O. Box 631
Corps of Engineers
ATTN: Mr. Hugh L. Green - WE SSS1
Vicksburg, MS 39180

Commander
US army Medical Bio-Engineering Research
and Development Laboratories
Fort Deterick
ATTN: Dr. C. Wade
Frederick, Maryland 21701

Commander
USA Aviation R&D Command
ATTN: DRDAV-EQA, Mr. W. McClane
4300 Goodfellow Blvd
St. Louis, MO 63120

Plastics Technical Evaluation Center ATTN: Mr. H. Pebly Mr. A. Landrock US Army ARRADCOM Dover, NJ 07801

Commander
Harry Diamond Laboratories
ATTN: Mr. N. Kaplan
Mr. J. M. Boyd
Library
Washington, DC 20438

Commander
Chemical Systems Laboratory
ATTN: DRDAR-CLB-PM, Mr. Dave Schneck
Aberdeen Proving Ground

Commander
Tobyhanna Army Depot
ATTN: Mr. A. Alfano
Toybhanna, PA 18466

Director
US Army Ballistic Research Laboratory
USA ARRADCOM Bldg 328
Aberdeen Proving Ground, MD 21005

US Army Materiel Development and Readiness Command
ATTN: DRCPM-UA, Mr. C. Musgrave DRCPM-LH, Mr. C. Cioffi DRCPM-HLS-T, Mr. R.E. Hahn

P.O. Box 209 St. Louis, MO 63166

Commander

Commander
Natick Research and Development Cmd
Natick, MA 01760

Commander
US Army Engineer Research and
Development Laboratories
Fort Belvoir, VA 22060

Department of the Navy Naval Air Systems Command ATTN: Mr. John J. Gurtowski (AIR 52032C) Washington, DC 20360

Naval Ordnance Station (NOSL) ATTN: Mr. W. J. Ryan Code 5041 Southside Drive Louisville, KY 40214 Naval Avionics Facility
ATTN: Mr. B. D. Tague, Code D/802
Mr. Paul H. Guhl, D/033.3
21st and Arlington
Indianapolis, IN 46218

Commander
US Naval Weapons Station
ATTN: Research and Development Div
Yorktown, VA 23491

Commander

Aeronautical Systems Division
ATTN: Mr. W. Scardino, AFML/MXE
Mr. T. J. Aponyi
Composite and Fibrous Materials Br
Nonmetallic Materials Div
Wright-Patterson AFB, OH 45433

US Army Air Mobility R&D Laboratory, Hqtrs Advanced Systems Research Office ATTN: Mr. F. Immen, MS 207.5 Ames Research Center Moffet Field, CA 94035

Naval Ship Engineering Center ATTN: Mr. W. R. Granger, SEC 6101E Prince George's Center Hyattsville, MD 20782

Mare Island Naval Shipyard Rubber Engineering Section ATTN: Mr. Ross E. Morris, Code 134.04 Vallejo, CA 94592

Hanscom Air Force Base ATTN: Mr. R. Karlson, ESD/DE, Stop 7 HQ, ESD Bedford, MA 01731

Naval Air Development Center
Materials Laboratory
ATTN: Mr. Coleman Nadler, Code 30221
Div, AVTD
Warminster, PA 18974

Defense Documentation Center (12) Cameron Station Alexandria, VA 22314

Dr. Robert S. Shane, Staff Scientist National Materials Advisory Board National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, DC 20418

US Army TRADOC Systems
Analysis Activity
ATTN: ATAA-SL (Tech Lib)
White Sands Missile Range, NM 88002

Commander
US Army Armament Materiel and
Readiness Command
ATTN: DRSAR-LEP-L
Rock Island, IL 61299

US Army Materiel Systems
Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Weapon System Concept Team/CSL ATTN: DRDAR-ACW Aberdeen Proving Ground, MD 21010

Technical Library
ATTN: DRDAR-CLJ-L
Aberdeen Proving Ground, MD 21005

Technical Library
ATTN: DRDAR-TSB-S
Aberdeen Proving Ground, MD 21010